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ABSTRACT
Currently, many workers in the field of medical
informatics realize the importance of knowledge reuse.
The PROTEGE-II project seeks to develop and
implement a domain-independent framework that
allows system builders to create custom-tailored role-
limiting methods from generic reusable components.
These new role-limiting methods are used to create
domain- and task-specific knowledge-acquisition tools
with which an application expert can generate domain-
and task-specific decision-support systems. One
required set of reusable components embodies the
problem-solving knowledge to generate temporal
abstractions. Previously, members of the PROTEIGEl-II
project have used these temporal-abstraction
mechanisms to infer the presence of myelotoxicity in
patients with AIDS. In this paper, we show that these
mechanisms are reusable in the domain of assessment
of children's growth.

1. REUSE OF KNOWLEDGE
The medical-informatics community has acknowledged
the importance of the development of approaches that.
will make it possible to reuse components of
knowledge. These components may be reusable
lexicons, ontologies, tasks, or problem-solving methods
[1]. Knowledge-acquisition (KA) tools that allow
developers to reuse predefined models of problem-
solving methods impose method-specific architectures
on the knowledge bases that the tools are used to
construct [2]. These architectures are often well suited
for the performance of only a narrow range of tasks. It
takes considerable time to develop new problem-
solving methods, as well as the associated knowledge-
acquisition tools and run-time environments.
Consequently, there is little chance that researchers can
reuse one another's work when the abstract definitions
of the method, the KA tools, and the run-time system
must be integrated completely. One type of potentially
separable, reusable component is the problem-solving
method itself, which is an abstract strategy to apply in
new domains. In PROTElGEl-II, problem-solving
methods either can or cannot be decomposed into
subtasks. Those problem-solving methods that are not
decomposable are called mechanisms. A problem-

solving mechanism solves one particular problem for a
task. It can be used for the same task in different
domains, because it allows separation of domain-
dependent knowledge (e.g., a domain-specific
ontology) from domain-independent problem-solving
knowledge. The latter can be task-specific.
Temporal-abstraction mechanisms are an example of
problem-solving methods that are domain independent
[2]. These mechanisms have been applied to the
domain of inferring myelotoxicity by the software
system RESUME [4]. In this paper, we show that the
temporal-abstraction mechanisms are indeed reusable
by describing how RESUME can perform the task of
temporal abstraction for the assessment of children's
growth.

2. METHODS AND ASSUMPTIONS
We shall introduce the domain, and give a brief
overview of the temporal-abstraction mechanisms as
well as our knowledge-acquisition cycle.
2.1 Assessment of children's growth.
The task of assessing of the normality of children's
growth is suitable for use of temporal-abstraction
mechanisms, in that the task requires analysis of time-
dependent data. The main difference from the domain
of myelotoxicity is that the time scale is much larger
(years, instead of days). A second difference is that
only a few data points are available (3 to 15 data points;
usually about 5).

In practice, a child's height, maturation, and other
relevant clinical data are recorded in the patient chart at
each visit. The height and maturation data also are
noted on a growth chart. A growth chart is a printed set
of standard growth curves that represents the mean and
the 95-percent confidence interval of the expected
height of a child at a particular age. The physician then
assesses the normality of the growth of a child, taking
into consideration the height of the parents, as well as
the maturation of the child.
2.2 Temporal-Abstraction Mechanisms
Our model of temporal abstraction is a point-based,
discrete, closed-interval temporal model [3]. Time
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intervals have associated parameter values. Parameters
can be either primitive (e.g., raw data, such as "HEIGHT
= 170 cm"), or abstract (e.g., characterizations such as
"rate of change in the HTSDS = FAST," where "HTSDS"
denotes the height expressed as standard deviation
score). If an interval has any abstraction attached to it,
we refer to it as an abstracted interval. We distinguish
among three types of abstractions: state, gradient, and
rate abstractions. These types correspond, respectively,
to the classification of the magnitude of the parameter,
to the sign of the derivative of the parameter during the
interval, and to the absolute magnitude of the derivative
of the parameter during the interval (e.g., LOW,
DECREASING, and FAST abstractions, respectively, for
the HTSDS parameter). We shall review each of the
three temporal abstraction mechanisms that we have
applied to the task of assessing children's growth.

Temporal Point Abstraction. This mechanism
abstracts into a single class one or more primitive or
abstract parameter values. The output of this
mechanism is an abstracted state, such as a
classification "maturation = AVERAGE', that might be
the classification of the combined values of several
Tanner stages expressed as standard deviation score
(SDS) (maturation parameters), and a bone-age
measurement expressed as SDS of one point in time.

Temporal Inference. This mechanism infers domain-
dependent sound logical conclusions over a single
interval or two meeting intervals, such as when the task
allows us to concatenate two meeting intervals with a
LOW value of the HTSDS state abstraction into one
(HTSDS = LOW) interval. Such abstractions have the
concatenable semantic property [3]. If abstractions are
concatenable, temporal inference also determines the
value of the joined abstraction (e.g., DECREASING and
INCREASING might be concatenated into
NONMONOTONIC).

Temporal Interpolation. This mechanism bridges
nonmeeting temporal points or intervals. Examples of
its use include creating a (HTSDS = LOW) episode
from two close abstracted points, or bridging a gap
between two known intervals of a (HTSDS =
DECREASING) gradient abstraction. The temporal-
interpolation mechanism uses a domain-specific
function, the A-function, that returns the maximal
allowed time gap between the two intervals that still
enables interpolation over the gap, joining the two
intervals and the gap into one interval with an
abstraction defined by the appropriate abstraction-
inference table. For instance, in any context, joining
two intervals where the state abstraction of the HTSDS
parameter was classified as LOW into a longer interval
where the state abstraction of the HTSDS parameter is
classified as LOW, might depend on the time gap

separating the two intervals, on the properties of the
HTSDS state abstraction for the value LOW in that
context, and on the lengths of time during which the
LOW property was known both before and after the
time gap.

The temporal-abstraction mechanisms do not operate in
a fixed order, but instead iterate alternately, activated
by the currently available data and the previously
derived abstractions. A truth-maintenance system
updates the temporal-interval conclusions and
propagates changes caused by any updates, since these
conclusions are by nature defeasible, their validity
being dependent on primitive data that might be
modified [4].

The growth-chart domain-specific knowledge required
by the temporal-abstraction mechanisms (e.g.,
classification tables for point abstraction) is represented
as a growth-chartparameter-properties ontology-that
is, as a pictorial theory that represents the raw and
abstract data in this domain (e.g., HTSDS state
abstractions, HTSDS rate abstractions, bone-age
maturation stages), and the relations among them. The
structure of the growth-chart domain parameter
ontology, of which an example will be shown in
Figure 1, is a combination of two graphs. The first is an
IS-A graph that represents the relations of abstractions,
subclasses, and subcontexts (e.g., HTSDS-CLASSIF is a
state abstraction of the parameter HTSDS). The second
is an INTO hierarchy that represents which one or more
parameters map into which other parameter (e.g.
HEIGHT, GENDER, AGE, and POPULATION DATA
map into HTSDS).
2.3 The Knowledge-Acquisition Cycle
Most of our KA work has concentrated on creating a
proper structure for the growth-chart domain
parameter-properties ontology, and instantiating the
class slots of the ontology (e.g., by instantiating
specific temporal-abstraction functions for particular
parameter classes) with the help of a domain expert. In
forming abstractions, we focused on the problem of
distinguishing between normal and abnormal growth.
The expert for the growth-chart domain was one of us
(DW), a pediatric endocrinologist.

First, we conducted a meeting in which we explained
the principles of the temporal-abstraction mechanisms.
We provided DW with literature about this
methodology, so that he would understand how we
wished to abstract his knowledge of the growth-chart
domain.

The following KA cycle was efficient, because the
temporal-abstraction mechanisms clearly define the
different kinds of knowledge that we had to acquire for
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the temporal-abstraction task. The mechanisms thus
define what McDermott [5] refers to as knowledge
roles. First, we examined the mechanisms to itemize
the knowledge roles (e.g., to identify a trend in the SDS
of height, the ontology would need the parameter
height and knowledge about the population distribution
of height). Second, we constructed a structure for the
ontology that satisfied those roles (e.g., we had to
define that HEIGHT has a state abstraction, but neither
a gradient abstraction nor a rate abstraction). Third, we
acquired the attributes and functions of the parameters
in the ontology (e.g., what is the minimal difference
between two measurements before they are considered
to be different, or which trends need to be recognized
and how they change by age).

3. RESULTS
We shall describe the result of our parameter-properties
ontology, as well as our experience with the application
ofRESUME to the growth-chart domain.

3.1 The Parameter-Properties Ontology for the
Growth-Chart Domain
The main structure of the ontology - the division
between abstract and primitive parameters - is shown
in Figure 1. The abstractions are subdivided into state,
gradient, and rate abstractions. All parameters are either
a primitive parameter or one of these abstractions, as
shown in the structure. We discuss in Section 3.2 the

asymmetric shape of the ontology around the parameter
"HEIGHT expressed as SDS" (HeightSD abstraction).
We changed the structure of the ontology many times.
An important reason for these changes was that a
particular variable would or would not be found to be
necessary for the task of assessing normality of growth,
as dictated by the temporal-abstraction mechanisms and
the expert. For example, we removed data on normality
of X-ray examinations of the skeleton, except for those
from the X-ray examination of the left hand for
boneage; laboratory values for indicators of illnesses in
internal medicine; and weight. As we learned from
DW, these data are important in diagnosing a disorder,
but are not relevant in distinguishing normal versus
abnormal growth of a child from abstracted intervals as
created by temporal abstraction.

3.2 The Application of REISUMEI to the Growth-
Chart Domain.
With the acquired knowledge, we were able to test
RESUME for the growth-chart domain on three case
examples - one patient with precocious puberty, and
two patients who showed a genetically short height, but
otherwise normal growth. All three cases yielded
intervals from which MK could draw as the conclusion
the diagnosis in the patient record. An example of the
results of these preliminary tests is shown in Figure 2.

Many more intervals were created by RESUME than
those shown in Figure 2, but the user does not need to
examine all of them. RESUMEI uses the intervals to

Figure 1: Part ofthe structure ofthe growth-chart parameter ontology. A combination oftwo graphs is shown:
IS-A graph = (->), showing the IS-A relations between objects, and an INTO hierarchy = (-->) that shows which

parameters map into which other parameter.
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create the larger abstracted intervals. By treating the
resultant complete collection of abstractions as a
database, we could sift through the created intervals
using RESUME's temporal query module to select only
those intervals that answer specific questions. In our
case, we wanted to examine those intervals that match
the criteria for normal or abnormal growth as specified
by DW. These criteria are not fixed and can be set or
fine-tuned by the individual user. In all three of our test
cases, the result of our queries yielded the same
conclusion about normality of the growth as that
reached by DW. We thus conclude that RESUME
generates those intervals necessary to reach the correct
interpretations for the three test cases.

4. DISCUSSION

The KA cycle gave us several important insights. The
first is that the system builders and DW had different
mental models of the knowledge necessary for the
growth-assessment task. We learned that there is a
delicate balance between adhering too closely to the
formal temporal-abstraction mechanisms model and
adapting too much to the clinician's intuition and
vocabulary. If the approach is too formal or too clinical,
either the expert refuses to continue to collaborate, or
the knowledge engineer does not get the information
she needs to instantiate the method with which she
chose to work.

The harmonization of our mental models [6] progressed
slowly. We learned from each other, and were finally
able to speak each other's language well enough to
instantiate the slots of the parameter-properties
ontology. Asking an expert to fill out the tables
manually without any support would be unrealistic.
Also, simply trying to enforce the formal model might
annoy the expert or even cause him to lose confidence
in the methodology, especially when the knowledge
engineer is working on the edge of what the expert is
willing to quantify explicitly. For example, cut-offs for
classifications were generally not difficult for DW to
give. However, DW did find it difficult to specify those
cutoffs that, in his model, were closely related to other
variables that together could influence the
interpretation.

One conclusion is that an automated KA interface that
enables the expert to modify the knowledge base in his
own time, and that provides some support for the KA,
might enhance the efficiency of the KA cycle, even
though it cannot completely replace a human-supported
cycle. We are currently developing systems that create
KA tools automatically from domain models in the
PROTEGE-II project. This project aims to provide
tools with which developers can generate KA tools for
specific domains with a specific problem-solving
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Figure 2: Part of the result of running RESUME using
the acquired parameter ontology on a test case (female
patient with precocious puberty). Time points,
intervals, and associated parameter values are shown,
starting with the HTSDS parameter. Next, the state
abstractions of the state abstractions of HTSDS are
shown, with values WORRYand ALARM. The higher two
levels show two stages ofthe gradient abstractions with
values SAME, INC= INCREASING, DEC=DECREASING.
The rate abstraction shows the values FAST and
STATIC.

method. These KA tools can in turn generate decision-
support systems, specialized for a specific task.

Our preliminary testing showed that the temporal-
abstraction mechanisms as used in REISUME yield the
abstractions needed to determine whether the growth
curve of a patient is normal. We draw our conclusions
with care because we have been able to test only three
cases in the growth domain. The results suggest that the
RESUME-created abstracted intervals resemble the
interval-based abstractions that physicians use, which
these physicians normally do not make explicit. In
addition, it is difficult for physicians to combine all
available abstractions quickly (e.g., HTSDS,
TannerSDS, and BoneageSD), whereas RESUME can
do so easily.

The domain of children's growth is different from the
protocol-treatment domains on which RESUMEI has
been tested previously [7, 8]. The scale of the timeline
in the growth-chart domain is large compared with that
of typical patient-visit oriented domains. This large
scale places different constraints on the required tables
and gap functions. For some of the maximal-gap
functions, we were able to use a simple truth-
persistence assumption (i.e., an infinite maximal-gap
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function, which means that, given some value at some
point in time, we assume that it stays the same unless
there is a reason to change that assumption). This
assumption has not been appropriate for the other
domains in which RESUME has been tested, because
the primary data values could fluctuate much more
widely. Growth-chart interpretations require mainly
high-level abstractions (e.g., the classification of
HTSDS is LOW ), rather than low-level abstractions
(e.g., HTSDS is equal to 0.6 ) that tend to fluctuate
wildly, which, just as in many other domains, makes
the simple truth-persistence assumption unrealistic.
Using high-level abstractions (e.g., the classification of
the HTSDS) reduced variations to the point of enabling
us to use an infinite gap function as a default.

In the growth-chart domain, the absolute-height value
itself plays only a minor role in the interpretation of the
growth curve. The abstractions of height and
maturation measures are more important. For example,
we use HTSDS as only a state abstraction of HEIGHT,
but we do not create gradient or rate abstractions of
HEIGHT. This example can be seen in the parameter
ontology of the growth-chart domain, where height is
abstracted into HTSDS, but not into
HEIGHT_GRADIENT or HEIGHT_RATE. On the
other hand, for the HTSDS parameter, all three
abstraction types are of interest; consequently, they are
represented in the ontology (HTSDS_STATE,
HTSDS_GRADIENT, and HTSDS_RATE). This
example is one where the process of creating the
ontology made knowledge explicit that previously was
only implicit.

It is remarkable that, in this seemingly simple domain,
we encountered symbolic state abstractions of symbolic
state abstractions (e.g., the state abstraction ALARM of
the state abstraction VERYHIGH of HTSDS), as well as
computational numeric and symbolic transformations
that are four levels deep (e.g., from the Tanner stage to
the maturation score). The creation of these abstractions
is in contrast with most domains that we have studied,
in which symbolic abstractions are created only from
numeric variables. Although some of these
transformations lose information, they focus the
interpretation process. RESUME1 maintains (and
answers queries about) the original, as well as
intermediate, data and abstractions.

In our experience, the temporal-abstraction mechanisms
provide efficient guidelines for what type of knowledge
(in which roles) we must acquire in the interaction with
an expert, to perform a certain task (e.g., temporal
abstraction). This guidance during one KA process is a
strong advantage of reusable mechanisms, which are
themselves domain independent.

Because the parameter ontology that results from one
KA project exists separately from the temporal-
abstraction mechanisms, the ontology is itself reusable.
For example, in the work of Kohane and Haimowitz on
automated trend deduction with alternate temporal
hypotheses [9], the two components are not separated,
which makes it difficult to reuse incorporated
knowledge. Our parameter ontology, on the other hand,
could be reused for tasks such as diagnosing a disorder,
making a treatment suggestion, or predicting a growth
trajectory.
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